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IDEAL FREE DISPERSAL UNDER GENERAL SPATIAL
HETEROGENEITY AND TIME PERIODICITY\ast 
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Abstract. A population is said to have an ideal free distribution in a spatially heterogeneous
but temporally constant environment if each of its members has chosen a fixed spatial location in
a way that optimizes its individual fitness, allowing for the effects of crowding. In this paper, we
extend the idea of individual fitness associated with a specific location in space to account for the full
path that an individual organism takes in space and time over a periodic cycle, and we extend the
mathematical formulation of an ideal free distribution to general time periodic environments. We find
that, as in many other cases, populations using dispersal strategies that can produce a generalized
ideal free distribution have a competitive advantage relative to populations using dispersal strategies
that cannot do so. A sharp criterion on the environmental functions is found to be necessary and
sufficient for such ideal free distribution to be feasible. In the case the criterion is met, we show the
existence of dispersal strategies that can be identified as producing a time-periodic version of an ideal
free distribution, and such strategies are evolutionarily steady and are neighborhood invaders from
the viewpoint of adaptive dynamics. Our results extend previous works in which the environments
are either temporally constant, or temporally periodic but the total carrying capacity is temporally
constant.
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1. Introduction. The ideal free distribution (IFD) is by now a well-established
concept in ecological theory, with profound ramifications for the understanding of
evolution of dispersal [5, 9, 10, 11, 12, 15, 38, 39, 40]. The ideal free distribution was
initially formulated as a verbal description of the way organisms located themselves
in nature [24, 25] motivated by observing territorial patterns of birds. It asserts that
if the members of a species have complete knowledge of the environment (ideal) and
may locate themselves without cost (free), then they will do so in a manner that
maximizes fitness, here thought of as local per capita reproductive success. Fitness is
assumed to be limited by the presence of conspecifics at the same spatial location. In
this framework, an IFD is achieved by the population when no individual can improve
its fitness by moving in a different way.

Suppose the environment is spatially heterogeneous but temporally constant, and
that dispersal and population dynamics are coupled additively. In this case, one can
argue formally that the ideal free distribution is equivalent to fitness being equili-
brated at zero. To see that, first we make the reasonable assumption that, like the
environment, the IFD of the population is also temporally constant. Then the species
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790 R. S. CANTRELL, C. COSNER, AND K.-Y. LAM

in question should continue to increase in abundance so long as fitness remains posi-
tive. Therefore, the local population growth should be zero, and the IFD corresponds
to a spatially varying equilibrium of the system in the absence of dispersal. In the
particular situation of a mathematical model with logistic growth in a habitat with a
favorable resource distribution, under appropriate scaling, such an equilibrium aligns
perfectly to the carrying capacity. Indeed, this has been rigorously proven in a number
of modeling settings, including reaction-diffusion-advection [5, 9, 38, 39, 40], discrete
diffusion [10], integro-differential [11, 16], integro-difference [13], and matrix models
[36]. In these papers, the ideal free dispersal, manifesting itself as the perfect align-
ment with carrying capacity, confers a distinct evolutionary advantage to a residential
species adopting such strategy. This advantage is expressed through the parlance of
adaptive dynamics [19, 26, 27] and focuses on the pairwise invasibility of compet-
ing species. We say that a dispersal strategy is an evolutionarily stable strategy
(ESS), also known as evolutionarily steady, relative to some classes of strategies if a
species adopting this strategy cannot be invaded by an ecologically identical competi-
tor adopting any other strategy from this class [54]. Precisely, when a rare population
of competitors is being introduced into an environment, in which the resident playing
the ESS is at equilibrium, the population of competitors decays in time. On the other
hand, a strategy is a neighborhood invader strategy (NIS) if it can invade any nearby
strategy. Strategies which are both ESS and NIS have a clear evolutionary advantage.
The results in [5, 9, 10, 11, 12, 13, 15, 38, 39, 40] show that ideal free dispersal is both
an ESS and an NIS robustly across a range of mathematical modeling frameworks in
spatially heterogeneous but temporally constant environments.

For the existence of ESS in families of dispersal strategies that do not generate
IFD, we refer the reader to [8, 21, 42, 45, 53] and the book chapter [44] for results in
the adaptive dynamics framework based on two-species interactions. See also [29, 41,
43, 56, 57] for related results in a framework in which the population is structured
by space and a dispersal trait. In the latter framework, the interaction between an
infinite number of species is being investigated.

The case of environments that are heterogeneous in both space and time differs
from the temporally constant case. In the temporally constant case, a logistically
growing population that is initially distributed with a positive density everywhere
will grow to exactly match the local carrying capacity everywhere. Thus, if the initial
conditions are right, a population can achieve an IFD with no dispersal at all. It is
well known that in the case of simple diffusion in continuous environments, or dis-
crete diffusion in patchy environments according to a fixed dispersal matrix, there is
selection for slower dispersal, and indeed the strategy of not moving at all is conver-
gence stable in the sense that a population with a smaller dispersal rate can invade
an ecologically similar population with a faster dispersal rate [30, 20, 36]. This fact
is related to the more general observation that dispersal resulting in mixing across
space reduces growth rates, which is known as the reduction phenomenon [2]. In en-
vironments that are heterogeneous in both time and space, there may sometimes be
selection for faster dispersal, or there may be stable polymorphisms where competi-
tors with different dispersal rates coexist; see [34]. Furthermore, if the local carrying
capacity or resource distribution of an environment varies in both space and time, a
population cannot match it without some type of dispersal. The motivation for trying
to understand the IFD in time-periodic environments is strong. Many environments
are seasonal, and in fact one of Fretwell's original works on the IFD is entitled Popu-
lations in a Seasonal Environment [24]. In the special case of a logistic model in an
environment where the total carrying capacity of the environment (or alternatively
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IFD IN PERIODIC ENVIRONMENTS 791

the sum of available resources) across space is constant in time, but whose spatial
distribution may vary periodically in time, a dispersal strategy that allows a popu-
lation to match the resource distribution exactly is derived and shown to be an ESS
and NIS in [7]. This case differs from the temporally constant case in that matching
the resource distribution in space and time requires the use of nonlocal information
about the environment, which is not the case in static environments, where dispersal
strategies based on purely local cues can produce an IFD.

There is a large literature on periodic-parabolic models in ecology and population
dynamics. For the general background, see [32]. More recent results can be found in
[3, 4, 6, 51] and the references therein. An interesting recent application to protection
zones is given in [52]. There also has been some work on nonspatial models for
populations in periodically varying environments where the populations are structured
by a trait that is subject to random mutation. Those lead to periodic-parabolic
reaction-diffusion equations where the diffusion is in trait space rather than physical
space; see, for example, [14, 23].

There are a number of issues that must be addressed in trying to interpret the
concept of an IFD and understand the evolution of dispersal in environments that
vary in both time and space. It is not immediately clear how individual fitness or an
IFD should be defined in that setting. In static environments we can view the local
per-capita growth rate at a given location as a proxy for the fitness of individuals at
that location. However, that definition is inadequate in time varying environments
where the fitness of an individual depends not only on its location but also on how
it is moving through space and time. Similarly, an IFD in a static environment
can be defined in terms of habitat selection that optimizes fitness, but in a varying
environment phenology (that is, the timing of life history events, including migration)
also becomes important.

In this article, we continue the investigation of evolution of dispersal strategies
in general spatially heterogeneous and time-periodic environments. As is shown by
[7], the analogy between IFD and perfect alignment with carrying capacity can hold
only under the limitation that the total carrying capacity is constant in time. In
section 2, we establish a notion of pathwise fitness, which leads to a broader notion
of IFD in the spatially heterogeneous and temporally periodic context. In particular,
the generalized version of IFD reduces to and includes the results of [7] when the total
level of resources is constant in time (i.e., condition (2.8) below holds). In section 3 we
propose a necessary and sufficient condition for the existence of dispersal strategies
that enable the species to achieve IFD, and we construct a concrete class of such
dispersal strategies. In section 4, we show that the proposed notion of IFD confers
the same evolutionary advantage as in the temporally constant case, in the sense that
once a strategy enables the species to achieve IFD, then it is both ESS and NIS.
Moreover, we will also show that it is necessary in the sense that a time-periodic
ecological attractor that is not an IFD can always be invaded by an exotic species
equipped with a suitably chosen dispersal strategy. In section 5, we close with some
further discussion of the implications of our results.

2. Pathwise fitness and IFD in spatially heterogeneous and temporally
periodic environments.

2.1. The single-species model. We consider the following class of reaction-
diffusion-advection models in the spatially heterogeneous and temporally periodic
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792 R. S. CANTRELL, C. COSNER, AND K.-Y. LAM

setting, which models the dynamics of the density \theta (x, t) of a single species:

(2.1)

\left\{     
\partial \theta 
\partial t = \nabla \cdot [\mu (x, t)\nabla \theta  - \theta \vec{}P (x, t)] + r(x, t)\theta 

\Bigl( 
1 - \theta 

K(x,t)

\Bigr) 
in \Omega \times (0,\infty ),

n \cdot [\mu (x, t)\nabla \theta  - \theta \vec{}P (x, t)] = 0 on \partial \Omega \times (0,\infty ),
\theta (x, 0) = \theta 0(x) in \Omega ,

where \Omega is a bounded domain in \BbbR k with smooth boundary \partial \Omega and unit outer normal
vector n = n(x); \mu (x, t) is the diffusion rate; \vec{}P (x, t) is the vector field describing the
directed movement; r(x, t) is the local intrinsic growth rate; K(x, t) is the carrying

capacity. We call (r,K) the environmental functions and (\mu , \vec{}P ) the dispersal strategy.

We assume that \mu , r,K, \vec{}P are smooth and T -periodic in t, and \mu , r,K are positive.
The no-flux boundary condition says that there is no net movement into or out of the
domain, as is reflected by an application of the divergence theorem:

(2.2)

\int 
\Omega 

\nabla \cdot [\mu (x, t)\nabla \theta  - \theta \vec{}P (x, t)] dx = 0.

It is well known that, for given positive, T -periodic coefficients \mu , r,K and T -periodic
vector field \vec{}P , equation (2.1) has a unique positive periodic solution \theta \ast (x, t), which
is globally asymptotically stable among all nonnegative, nontrivial solutions [32].

2.2. A notion of fitness. One characterization of the IFD in a spatially het-
erogeneous but temporally constant environment is that when a population is at a
steady state, individuals at all locations should have equal fitness, since otherwise
some would change their behavior to increase their fitness. For theoretical models we
need to have a notion of fitness so that we can compare the fitness of individuals using
different strategies. If we consider a population where individuals do not move but
have spatial locations, a simple population model for population growth at locations
x, time t, and density u would take the form

(2.3)
du

dt
= F (x, t, u)u,

where F (x, t, u) represents the per-capita growth rate of a population at location x,
time t, and density u, which is a commonly used proxy for reproductive fitness. If
F does not depend on t and either u is held fixed (for example, if a population is at
equilibrium) or F does not depend on u, we can interpret F = F (x) as the average
fitness of individuals at location x and use F (x) to model reproductive fitness. In
the case of a time-periodic environment with period T we can still define fitness at
location x by considering the period map u(x, 0) \rightarrow u(x, T ). In the case F = F (x, t)
we obtain from (2.3) that

(2.4) u(x, T ) = e
\int T
0

F (x,s)dsu(x, 0).

If we let R(x) = e
\int T
0

F (x,s)ds , then in the case where F does not depend on t we can
recover our original fitness proxy F (x) for that case as F (x) = (1/T ) log(R(x)). Since
we are interested only in comparing fitness between different individuals rather than
determining absolute fitness, and T will be fixed throughout the paper, we will drop
the scale factor 1/T and just use

(2.5) logR(x) =

\int T

0

F (x, s)ds
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IFD IN PERIODIC ENVIRONMENTS 793

as our fitness proxy over a time period in the remainder of our discussion. (It is worth
noting that in studies of evolution in simple discrete time models for a population xt,
for example, models of the form xt+1 = r(xt, . . . )xt, fitness is defined as log(r(xt, . . . ));
see, for example, [17, equations (4) and (5)].) Suppose now that the local per-capita
growth rate is still given by F (x, t) and is still T -periodic, but that individuals do
not remain at fixed locations. Instead, suppose that each individual follows a path
x = \gamma (t) through space as t goes from 0 to T . Substituting into (2.5) gives

(2.6) Fpath(\gamma ) =

\int T

0

F (\gamma (s), s)ds.

A somewhat similar but distinct definition of fitness based on the path that an indi-
vidual takes through space and time was used in [58], where the authors considered
optimal migration from a different modeling viewpoint.

Now, we specialize to the reaction-diffusion setting of (2.1). When the environ-
ment is temporally constant (i.e., r = r(x) and K = K(x)), the stable population will
be at equilibrium \theta \ast (x), so that the per-capita growth rate depends on location only:

F (x) = r(x)

\biggl( 
1 - \theta \ast (x)

K(x)

\biggr) 
.

In such a case the IFD is realized when fitness is equilibrated, so that the IFD equi-
librium corresponds to the perfect alignment with carrying capacity:

\theta \ast (x) \equiv K(x).

In contrast, when the environment is time periodic, we expect the population density
to stabilize at a time-periodic solution \theta \ast (x, t), so that the per-capita growth rate
varies in both space and time:

(2.7) F (x, t) = r(x, t)

\biggl( 
1 - \theta \ast (x, t)

K(x, t)

\biggr) 
.

In case r(x, t) = K(x, t), the first two authors [7] show that, under the additional
assumption that the carrying capacity is everywhere positive and that the total level
of resources in the environment remains constant in time, precisely,

(2.8)

\int 
K(x, t) dx = const.,

then there exists a class of dispersal strategies (i.e., choices of \mu and \vec{}P ) under which
the IFD can be achieved in the form of perfect alignment with carrying capacity,
i.e., \theta \ast (x, t) = K(x, t). The authors went on to show that such dispersal strategies
are both ESS and NIS. However, as observed in [7], perfect alignment with carrying
capacity is impossible if (2.8) is false.

Substituting (2.7) into (2.6), the pathwise fitness of an individual traveling a path
\gamma (t) during the time period [0, T ] can be defined as

Fpath(\gamma ) =

\int T

0

\biggl[ 
r(x, t)

\biggl( 
1 - \theta \ast (x, t)

K(x, t)

\biggr) \biggr] 
x=\gamma (t)

dt.

Suppose the population achieves IFD. Then we expect that no individual can gain
proliferative advantage by dispersing itself differently within the time period [0, T ],
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794 R. S. CANTRELL, C. COSNER, AND K.-Y. LAM

so that the pathwise fitness Fpath(\gamma ) will be equilibrated among all possible paths \gamma ;
i.e., a distribution \theta \ast (x, t) is IFD if and only if the corresponding pathwise fitness
Fpath(\gamma ) is independent of paths \gamma . Observe that

(2.9) inf
\gamma 

Fpath(\gamma ) =

\int T

0

inf
x\in \Omega 

F (x, t) dt and sup
\gamma 

Fpath(\gamma ) =

\int T

0

sup
x\in \Omega 

F (x, t) dt,

where the infimum and supremum are taken over all continuous paths \gamma : [0, T ] \rightarrow \Omega .
See Appendix B for the proof of (2.9). (We remark that the set of test functions
can be further reduced to the class of all C\infty paths by a density argument.) This
motivates the following definition.

Definition 2.1. Suppose the population density stabilizes at a positive periodic
solution \theta \ast (x, t). We say that \theta \ast (x, t) is an ideal free distribution (IFD) if

F (x, t) = r(x, t)

\biggl( 
1 - \theta \ast (x, t)

K(x, t)

\biggr) 
is independent of x.

Observe that total alignment with resource (i.e., \theta \ast (x, t) = K(x, t) for all x and
t) is a sufficient, but not necessary, condition for IFD in the sense of Definition 2.1.
For example, when r(x, t) \equiv 1, then \theta \ast (x, t) = p(t)K(x, t) is IFD for some p(t). See
Remark 3.4(a) for details.

In section 4, we will give two pieces of evidence in support of the validity of the
above definition of an IFD. First, we show that a species that is able to achieve IFD,
in the absence of competitors, can always competitively exclude a species that does
not achieve IFD. Conversely, if a given resident species does not achieve IFD, then it
can be invaded by an exotic species with a suitably chosen dispersal strategy.

3. The existence of IFD strategy. The goal of this section is to give a suf-
ficient and necessary condition, in terms of the environmental functions r(x, t) and

K(x, t), so that there exists a class of dispersal strategies (\mu , \vec{}P ) whose corresponding
positive T -periodic solution of (2.1) is an IFD.

We outline our main ideas as follows. First, we define a periodic function M(t) by
solving a Bernoulli-type equation (see Lemma 3.1). Second, we consider the transfor-
mation \~\theta (x, t) = \theta (x, t)/M(t), which transforms the single-species problem (2.1) into
the following:

(3.1)

\left\{     
\partial \~\theta 
\partial t = \nabla \cdot [\mu (x, t)\nabla \~\theta  - \~\theta \vec{}P (x, t)] + \~r(x, t)\~\theta 

\Bigl( 
1 - \~\theta 

\~K(x,t)

\Bigr) 
in \Omega \times (0,\infty ),

n \cdot [\mu (x, t)\nabla \~\theta  - \~\theta \vec{}P (x, t)] = 0 on \partial \Omega \times (0,\infty ),
\~\theta (x, 0) = \~\theta 0(x) in \Omega ,

where

(3.2) \~r(x, t) = r(x, t) - M \prime (t)

M(t)

and

(3.3) \~K(x, t) =
K(x, t)

M(t)r(x, t)

\biggl( 
r(x, t) - M \prime (t)

M(t)

\biggr) 
=

K(x, t)

M(t)
 - K(x, t)

r(x, t)
\cdot M

\prime (t)

M(t)2
.

Then we have an equivalent system where the new carrying capacity \~K(x, t) satisfies,
by our choice of M(t) in Lemma 3.1,

(3.4)

\int 
\~K(x, t) dx = 1 for all t.
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Provided that the positivity conditions \~r, \~K > 0 (see (3.9)) hold, we can apply the
results in [7] to yield an IFD of (3.1) that perfectly matches the new carrying capacity
\~K(x, t). This gives a mathematically natural way of extending the notion of IFD
to general time-periodic environments. Condition (3.9), which corresponds to the
positivity of carrying capacity in the transformed problem (3.1), can be interpreted
as a criterion that prevents the appearance of generalized sinks in the original problem
(2.1).

In subsection 3.1, we state condition (3.9), under which we can define an IFD
\theta \ast (x, t) = M(t) \~K(x, t), where M(t) and \~K(x, t) are defined in terms of the environ-
mental data r(x, t),K(x, t) by solving a Bernoulli-type equation. In subsection 3.2, we
will show that condition (3.9) is necessary, and that the IFD \theta \ast (x, t) = M(t) \~K(x, t)
is the only possible form of IFD for the class of population dynamics as described
by the reaction-diffusion-advection equation (2.1). In subsection 3.3, we construct a
class of dispersal strategies which generates IFD.

3.1. The Bernoulli equation. Let the environmental functions r(x, t),K(x, t)
be given. We define M(t) as follows.

Lemma 3.1. There exists a unique, positive, T -periodic function M(t) such that

(3.5)
K(t)

M(t)
 - (K/r)(t)

M \prime (t)

M(t)2
= 1,

where, hereafter, \=f(t) denotes the spatial average of f(x, t), as given by 1
| \Omega | 
\int 
\Omega 
f(x, t) dx.

Proof. It remains to solve

M \prime (t)

M(t)
+ b(t)M(t) = a(t),

where

(3.6) a(t) :=
K(t)

(K/r)(t)
and b(t) =

1

(K/r)(t)
.

First we show uniqueness. Suppose M(t) is a positive T -periodic solution of (3.5).
Then w(t) = 1/M(t) satisfies

 - w\prime + b(t) = a(t)w

so that \biggl[ 
exp

\biggl( \int t

0

a(s) ds

\biggr) 
w(t)

\biggr] \prime 
= b(t) exp

\biggl( \int t

0

a(s) ds

\biggr) 
.

Integrating the above, we obtain

w(t) = exp

\biggl( 
 - 
\int t

0

a(s) ds

\biggr) 
w(0) +

\int t

0

b(s) exp

\biggl( 
 - 
\int t

s

a(\tau ) d\tau 

\biggr) 
ds.

By invoking the periodicity w(0) = w(T ), we further determine w(0) uniquely. That
is,

1

M(t)
= w(t) = exp

\biggl( 
 - 
\int t

0

a(s) ds

\biggr) \int T

0
b(s) exp

\Bigl( 
 - 
\int T

s
a(\tau ) d\tau 

\Bigr) 
ds

1 - exp
\Bigl( 
 - 
\int T

0
a(s) ds

\Bigr) 
+

\int t

0

b(s) exp

\biggl( 
 - 
\int t

s

a(\tau ) d\tau 

\biggr) 
ds.(3.7)
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This proves uniqueness. Conversely, (3.7) also defines a solution to (3.5), so that
existence follows immediately.

Next, we define \~K(x, t) in terms of r(x, t),K(x, t), and M(t), by (3.3), and define

(3.8) \theta \ast (x, t) := M(t) \~K(x, t).

We show that \theta \ast defines an IFD.

Lemma 3.2. Assume

(3.9) K(x, t) > (K/r) (x, t)
M \prime (t)

M(t)
.

Then the distribution \theta \ast is an IFD. Precisely, the fitness function satisfies

(3.10) r(x, t)

\biggl[ 
1 - \theta \ast (x, t)

K(x, t)

\biggr] 
= r(x, t)

\Biggl[ 
1 - M(t) \~K(x, t)

K(x, t)

\Biggr] 
=

M \prime (t)

M(t)
.

Proof. By (3.9), the function \~K(x, t) defined in (3.3) is positive, so that \theta \ast (x, t) =
M(t) \~K(x, t) is also positive. Finally, (3.10) follows by rewriting (3.3).

Remark 3.3. Condition (3.9) can also be written as r(x, t) > M \prime (t)/M(t). We
prefer the above formulation, in view of the fact that K and K/r have already ap-
peared in the definition of M(t). Also, by combining (3.3) and (3.5), we have

(3.11) \~K(x, t) =
K(x, t) - K(t)

M(t)
+

(K/r)(x, t)

(K/r)(t)
 - K(t)

M(t)

\Biggl[ 
(K/r)(x, t)

(K/r)(t)
 - 1

\Biggr] 
.

This gives yet another equivalent formulation of (3.9), which is

(3.12)
K(x, t) - K(t)

M(t)
>

K(t)

M(t)

\Biggl[ 
(K/r)(x, t)

(K/r)(t)
 - 1

\Biggr] 
 - (K/r)(x, t)

(K/r)(t)
.

Remark 3.4.
(a) If r \equiv 1, then (3.12) and thus (3.9) hold for any K(x, t) > 0. The correspond-

ing IFD is given by

\theta \ast (x, t) =
M(t)

K(t)
K(x, t).

Note that \theta \ast (x, t) is proportional in space to K(x, t) for each t.
(b) If K \equiv 1, then a(t) = b(t) = [(1/r)(t)] - 1 and M(t) \equiv 1 and the IFD is homo-

geneous 1, and the IFD strategy can simply be taken to be the homogeneous
diffusion operator.

(c) If (K/r)(t) \equiv 1 and K(t) = const., then M(t) = K(t), so that (3.12) and
(3.9) are reduced to the requirements r(x, t),K(x, t) > 0. This includes the
results in [7], where r(x, t) = K(x, t) and condition (2.8) are enforced.

(d) Consider the special case r(x, t) \equiv K(x, t), which is the simplified logistic
model considered in [7]. Fix an arbitrary \rho (t) which is positive, periodic, and
nonconstant, and define M(t) to be the unique periodic solution to

M \prime (t)

M(t)
+M(t) = \rho (t).
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Then it is easy to see that M \prime (t)/M(t) changes sign in t. Hence, the condition
(3.9) fails if we choose K(x, t) = r(x, t) such that

K(t) = \rho (t), and inf
x\in \Omega 

K(x, t) - M \prime (t)

M(t)
changes sign.

3.2. Necessary condition for an IFD. In the previous subsection, we saw
that \theta \ast (x, t) = M(t) \~K(x, t) is an IFD. In this subsection we will show that this is the
only possibility. For this purpose, consider the N -species competition model
(3.13)\left\{       

dui

dt = \nabla \cdot [\mu i(x, t)\nabla ui  - ui
\vec{}Pi(x, t)] + r(x, t)ui

\biggl( 
1 - 

\sum N
j=1 uj

K(x,t)

\biggr) 
in \Omega \times (0,\infty ),

n \cdot [\mu i(x, t)\nabla ui  - ui
\vec{}Pi(x, t)] = 0 on \partial \Omega \times (0,\infty ),

ui(x, 0) = ui,0(x) in \Omega 

for 1 \leq i \leq N , where \mu i(x, t), \vec{}Pi are smooth, T -periodic in t, \mu i(x, t) > 0, and
r(x, t),K(x, t) are as before.

Definition 3.5. Let (\~ui(x, t))
N
i=1 be a positive, T -periodic solution of (3.13). We

say that (\~ui(x, t))
N
i=1 is an IFD if \theta \ast (x, t) =

\sum N
i=1 \~ui(x, t) is an IFD, i.e.,

r(x, t)

\Biggl( 
1 - 

\sum N
i=1 \~ui(x, t)

K(x, t)

\Biggr) 
depends on t only.

Theorem 3.6. Let (\~ui(x, t))
N
i=1 be a positive, T -periodic solution of (3.13). Sup-

pose (\~ui(x, t))
N
i=1 is an IFD. Then (3.9) holds and

N\sum 
i=1

\~ui(x, t) = M(t) \~K(x, t),

where the T -periodic functions M(t) and \~K(x, t) are uniquely determined by r(x, t)
and K(x, t), via (3.5) and (3.3), respectively.

Remark 3.7. As noted in Remark 3.4(d), there exists positive functions r(x, t),
K(x, t) which are periodic in t such that (3.9) does not hold, and thus Corollary 3.8
shows that IFD is impossible for such environments.

Proof of Theorem 3.6. First, we define \theta \ast (x, t) =
\sum N

i=1 \~ui(x, t) and then define
M(t) as

(3.14) M(t) = \theta \ast (0) exp

\biggl[ \int t

0

r(x, s)

\biggl( 
1 - \theta \ast (x, s)

K(x, s)

\biggr) 
ds

\biggr] 
,

where \theta \ast (0) = 1
| \Omega | 
\int 
\Omega 
\theta \ast (x, 0) dx. (Note that the right-hand side of (3.14) is indepen-

dent of x, since \theta \ast is an IFD.) Then M(t) is positive and satisfies

(3.15)
M \prime (t)

M(t)
= r(x, t)

\biggl( 
1 - \theta \ast (x, t)

K(x, t)

\biggr) 
and the equation of \~ui(x, t) becomes

(3.16)
\partial \~ui

\partial t
= \nabla \cdot [\mu i\~ui  - \~ui

\vec{}Pi] +
M \prime (t)

M(t)
\~ui.
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Using the no-flux boundary conditions of \~ui, we can integrate (3.16) in \Omega to get

d

dt
\~ui(t) =

M \prime (t)

M(t)
\~ui(t).

Adding in i = 1, . . . , N , we obtain

(3.17)
d

dt
\theta 
\ast 
(t) =

M \prime (t)

M(t)
\theta 
\ast 
(t).

Dividing (3.17) by \theta \ast (t) > 0 and setting t = 0 in (3.14), we have

(logM)\prime (t) = (log \theta \ast )\prime (t) for all t \geq 0, and M(0) = \theta \ast (0).

Therefore,

(3.18) \theta \ast (t) = M(t) for all t.

In particular, M(t) is T -periodic in t as well.
Next, we show that M(t) satisfies (3.5). Indeed, multiply both sides of (3.15) by

K(x, t)/r(x, t) to get

K(x, t)

r(x, t)

M \prime (t)

M(t)
= K(x, t) - \theta \ast (x, t).

Integrating the above over in x \in \Omega and using (3.18), we get

K/r(t)
M \prime (t)

M(t)
= K(t) - M(t),

which is equivalent to (3.5).
Then, defining \~K(x, t) = \theta \ast (x, t)/M(t), we deduce from (3.15) that

(3.19)
M \prime (t)

M(t)
= r(x, t)

\Biggl( 
1 - M(t) \~K(x, t)

K(x, t)

\Biggr) 
,

which is equivalent to (3.3).
Finally, (3.19) implies r(x, t) > M \prime (t)/M(t), which implies that (3.9) holds.

Corollary 3.8. Let \theta \ast (x, t) be a positive solution of the single-species problem
(2.1). Suppose \theta \ast is an IFD, i.e.,

r(x, t)

\biggl( 
1 - \theta \ast (x, t)

K(x, t)

\biggr) 
depends on t only.

Then \theta \ast (x, t) = M(t) \~K(x, t) and (3.9) holds, where the T -periodic functions M(t)
and \~K(x, t) are uniquely determined by r(x, t) and K(x, t), via (3.5) and (3.3), re-
spectively.

3.3. Sufficient condition for existence of an IFD strategy.

Theorem 3.9. Let r(x, t),K(x, t) be given, and let M(t), \~K(x, t) be given, respec-
tively, by (3.7) and (3.3) in terms of r(x, t) and K(x, t). Suppose (3.9) holds. Then

for each \mu (x, t) > 0 there exists a suitable \vec{}P (x, t) such that the corresponding positive
periodic solution \theta \ast (x, t) is an IFD. In fact, \theta \ast (x, t) = M(t) \~K(x, t).
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Proof of Theorem 3.9. Fix r(x, t), K(x, t), and \mu (x, t), and let M(t) and \~K(x, t)
be given, respectively, by (3.7) and (3.3). Since (3.9) holds, Lemma 3.2 says that the
function \theta \ast (x, t) = M(t) \~K(x, t) defines an IFD.

Next, we define \vec{}P \ast (x, t) in terms of \mu (x, t), as in [7, equation (8)]:

(3.20) \vec{}P \ast (x, t) =
1

\~K(x, t)

\Bigl[ 
\mu \nabla \~K(x, t) - \nabla q

\Bigr] 
,

where, for each t, q(x, t) is the unique solution to

\Delta q =
\partial \~K

\partial t
in \Omega , and n \cdot \nabla q = 0 on \partial \Omega .

The function q is well-defined for each t, since we have
\int 
\Omega 

\partial \~K
\partial t (x, t) dx = 0 for all t,

according to (3.4).

Claim 3.10. The unique time-periodic solution corresponding to the dispersal
strategy (\mu , \vec{}P \ast ) is given by \theta \ast (x, t) = M(t) \~K(x, t); i.e., it is the unique positive
solution to

\partial \theta \ast 

\partial t
= \nabla \cdot [\mu \nabla \theta \ast  - \theta \ast \vec{}P \ast ] + r(x, t)\theta \ast 

\biggl[ 
1 - \theta \ast (x, t)

K(x, t)

\biggr] 
in \Omega \times [0, T ],(3.21)

n \cdot [\mu \nabla \theta \ast  - \theta \ast \vec{}P \ast ] = 0 on \partial \Omega \times [0, T ],(3.22)

\theta \ast (x, 0) = \theta \ast (x, T ) in \Omega .(3.23)

To show (3.23), we first observe that M(t) is T -periodic by Lemma 3.1. Thus
\~K(x, t) is also T -periodic in t by (3.3). Since \theta \ast (x, t) = M(t) \~K(x, t), we deduce (3.23).

Next, we show (3.22).

n \cdot [\mu \nabla \theta \ast  - \theta \ast \vec{}P \ast ] = M(t)n \cdot [\mu \nabla \~K  - \~K \vec{}P \ast ]

= M(t)
\Bigl[ 
\mu (n \cdot \nabla \~K) - \~K(n \cdot \vec{}P \ast )

\Bigr] 
= M(t)

\biggl[ 
\mu (n \cdot \nabla \~K) - \~K

\biggl( 
n
\~K

\biggr) 
\cdot (\mu \nabla \~K  - \nabla q)

\biggr] 
= M(t)(n \cdot \nabla q) = 0,

where the third equality follows by taking the scalar product of both sides of (3.20)
with the outer normal vector n, and the last equality follows from the fact that q
satisfies the Neumann boundary condition on \partial \Omega .

Before going further, we multiply both sides of (3.20) by \~K and take divergence
of both sides to obtain

(3.24) \nabla \cdot ( \~K \vec{}P \ast ) = \nabla \cdot (\mu \nabla \~K  - \nabla q) = \nabla \cdot (\mu \nabla \~K) - \partial \~K

\partial t
.

Now we proceed to show (3.21):

\partial \theta \ast 

\partial t
 - \nabla \cdot [\mu \nabla \theta \ast  - \theta \ast \vec{}P \ast ]

=
\partial 

\partial t
(M(t) \~K(x, t)) - \nabla \cdot [\mu \nabla (M(t) \~K(x, t)) - (M(t) \~K(x, t))\vec{}P \ast (x, t)]

= \~K(x, t)M \prime (t) +M(t)

\Biggl\{ 
\partial \~K

\partial t
(x, t) - \nabla \cdot [\mu \nabla \~K(x, t) - \~K(x, t)\vec{}P \ast (x, t)]

\Biggr\} 
= \~K(x, t)M \prime (t),
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where we used (3.24) in the last equality. Taking (3.10) into account,

\partial \theta \ast 

\partial t
 - \nabla \cdot [\mu \nabla \theta \ast  - \theta \ast \vec{}P \ast ] = r \~KM

\biggl( 
1 - \theta \ast 

K

\biggr) 
.

This proves (3.21). The uniqueness of \theta \ast is standard [32].

4. An IFD is necessary and sufficient for ESS and NIS. We consider the
following class of two-species competition models in the spatially heterogeneous and
temporally periodic setting:

(4.1)

\left\{           
\partial u
\partial t = \nabla \cdot [\mu (x, t)\nabla u - u\vec{}P (x, t)] + r(x, t)u

\Bigl( 
1 - u+v

K(x,t)

\Bigr) 
in \Omega \times (0,\infty ),

\partial v
\partial t = \nabla \cdot [\nu (x, t)\nabla v  - v \vec{}Q(x, t)] + r(x, t)v

\Bigl( 
1 - u+v

K(x,t)

\Bigr) 
in \Omega \times (0,\infty ),

n \cdot [\mu (t, x)\nabla u+ u\vec{}P (x, t)] = 0 on \partial \Omega \times (0,\infty ),

n \cdot [\nu (t, x)\nabla v + v \vec{}Q(x, t)] = 0 on \partial \Omega \times (0,\infty ),

where the functions \mu , \nu , r,K are positive, smooth, T -periodic in t, the vector fields
\vec{}P , \vec{}Q are smooth and T -periodic in t, and n denotes the outer unit normal vector on
\partial \Omega . The no-flux boundary conditions say that there is no net movement into or out of
the domain. Note that, as in [30], the two species are assumed to be identical except
for their dispersal strategies.

We note that the competition system (4.1) has one trivial periodic solution, (0, 0),
and two semitrivial periodic solutions, (\theta \ast , 0) and (0, v\ast ), where \theta \ast is the unique
positive periodic solution of (2.1), and v\ast is the unique positive solution to

(4.2)

\left\{     
\partial v\ast 

\partial t = \nabla \cdot [\nu (x, t)\nabla v\ast  - v\ast \vec{}Q(x, t)] + r(x, t)v\ast 
\Bigl( 
1 - v\ast 

K(x,t)

\Bigr) 
in \Omega \times [0, T ],

n \cdot [\nu (x, t)\nabla v\ast  - v\ast \vec{}Q(x, t)] = 0 on \partial \Omega \times [0, T ],
v\ast (x, 0) = v\ast (x, T ) in \Omega .

There are two main results in this section. The first one is to show that, for the
competition model (4.1), the dispersal strategies which generate IFD always dominate
the strategies which do not. That is, the dispersal strategies which generate IFD are
both ESS and NIS.

Theorem 4.1. Let (u, v) be a solution of the competition model (4.1) with non-
negative, nontrivial initial data. Suppose

(C) \theta \ast is an IFD and v\ast is not an IFD,

where IFD is defined in the sense of Definition 2.1. Then the semitrivial periodic so-
lution (\theta \ast , 0) is globally asymptotically stable among all nontrivial nonnegative initial
data, i.e.,

\| (u(\cdot , t), v(\cdot , t)) - (\theta \ast (\cdot , 0), 0)\| C(\=\Omega ) \rightarrow 0 as t \rightarrow \infty .

Theorem 4.1 is proved in subsection 4.1.
Our second result says that the condition \theta \ast being an IFD in Theorem 4.1 is

sharp.

Theorem 4.2. Let (\theta \ast (x, t), 0) be a T -periodic solution of (4.1). If \theta \ast (x, t) is not

IFD, then there exists (\nu , \vec{}Q) such that a second species with diffusion rate \nu > 0 and

advection rate \vec{}Q(x, t) can invade when rare; i.e., the (\theta \ast (x, t), 0) is unstable in (4.1).
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Proof. Recall that F (x, t) = r(x, t)
\bigl( 
1 - \theta \ast (x,t)

K(x,t)

\bigr) 
. Suppose \theta \ast (x, t) is not IFD. We

claim that

(4.3)

\int T

0

sup
x\in \Omega 

F (x, t) dt > 0.

Indeed, if we integrate (2.1) over \Omega , then

d

dt

\int 
\Omega 

\theta \ast (x, t) dx =

\int 
\Omega 

F (x, t)\theta \ast (x, t) dx <

\biggl( 
sup
x\in \Omega 

F (x, t)

\biggr) \int 
\Omega 

\theta \ast (x, t) dx,

where the latter equality is strict as F (x, t) is not independent of x. If we divide the
above by

\int 
\Omega 
\theta \ast (x, t) dx, then

d

dt
log

\biggl( \int 
\Omega 

\theta \ast (x, t) dx

\biggr) 
< sup

x\in \Omega 
F (x, t).

Integrating over [0, T ] and using the periodicity of \theta (x, t), we obtain (4.3).
By (4.3) and the latter part of (2.9), one can choose a smooth, T -periodic curve

\gamma : \BbbR \rightarrow Int\Omega such that

(4.4)

\int T

0

F (\gamma (t), t) dt > 0.

Now, let \nu be a positive constant and define

(4.5) \vec{}Q\alpha (x, t) = \alpha (\gamma (t) - x),

where \alpha is a constant to be specified later. It suffices to show that the principal
eigenvalue \lambda 1 of the linear periodic-parabolic problem

(4.6)

\left\{     
d\varphi 
dt = \nabla \cdot [\nu \nabla \varphi  - \varphi \vec{}Q\alpha (x, t)] + F (x, t)\varphi + \lambda 1\varphi in \Omega \times [0, T ],

n \cdot [\nabla \varphi  - \varphi \vec{}Q\alpha (x, t)] = 0 on \partial \Omega \times [0, T ],

\varphi (x, 0) = \varphi (x, T ) in \Omega 

is negative. We proceed by considering the adjoint problem, for which the principal
eigenvalue \lambda 1 is the same:

(4.7)

\left\{     
d\phi 
dt = \nu \Delta \phi +\nabla \phi \cdot \vec{}Q\alpha (x, T  - t) + F (x, T  - t)\phi + \lambda 1\phi in \Omega \times [0, T ],

n \cdot \nabla \phi = 0 on \partial \Omega \times [0, T ],

\phi (x, 0) = \phi (x, T ) in \Omega ,

where we used the fact that \nu is constant. By taking m(x, t) =  - 1
2 | x  - \gamma (T  - t)| 2,

Remark A.2 in the appendix shows the hypotheses of Proposition A.1 in the appendix
are met, and thereby that result may be employed to show that

lim sup
\alpha \rightarrow \infty 

\lambda 1 \leq  - 1

T

\int T

0

F (\gamma (T  - t), T  - t) dt =  - 1

T

\int T

0

F (\gamma (t), t) dt.

Since the last term on the right-hand side is negative (by (4.4)), we have proved that
the new species can indeed invade the non-IFD \theta \ast (x, t) when rare.
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Remark 4.3. Let N \geq 2 and let \~u = (\~u1, . . . , \~uN ) be a stable T -periodic solution
of the N -species competition system (3.13). Then the above can be applied to show
the instability of (\~u, 0) in the extended (N + 1)-species competition model, with an
additional species with a suitable dispersal strategy.

Remark 4.4. For environments where (3.9) does not hold, it is proved in Theorem
3.6 that no T -periodic solutions can achieve IFD. In such a case, the proof of Theorem
4.2 says that no T -periodic solution consisting of any number of species can be an
ESS.

Remark 4.5. When the number of species is less than or equal to two, then the
corresponding model generates a monotone dynamical system [60], in which any at-
tractor is necessarily T -periodic. Hence, Theorem 4.2 says that, in the case where
(3.9) does not hold, any ecological attractor that is ESS must not be periodic in time
and must consist of at least three species.

4.1. Proof of Theorem 4.1. In this subsection, we prove Theorem 4.1 by
transforming the question into the context of [7] and then adapting the arguments
therein.

Proof of Theorem 4.1. By Corollary 3.8, we deduce that (3.9) holds and

(4.8) \theta \ast (x, t) = M(t) \~K(x, t) and v\ast (x, t) \not \equiv M(t) \~K(x, t).

The idea is to transform the system into one that is similar to [7] and adapt the
arguments therein. For this purpose, write

(u(x, t), v(x, t)) = M(t)(U(x, t), V (x, t))

so that by (3.3), (U, V ) satisfies
(4.9)\left\{           

\partial U
\partial t = \nabla \cdot [\mu (x, t)\nabla U  - U \vec{}P (x, t)] + \^r(x, t)U

\Bigl( 
\~K(x, t) - U  - V

\Bigr) 
in \Omega \times (0,\infty ),

\partial V
\partial t = \nabla \cdot [\nu (x, t)\nabla V  - V \vec{}Q(x, t)] + \^r(x, t)V

\Bigl( 
\~K(x, t) - U  - V

\Bigr) 
in \Omega \times (0,\infty ),

n \cdot [\mu (t, x)\nabla U  - U \vec{}P (x, t)] = 0 on \partial \Omega \times (0,\infty ),

n \cdot [\nu (t, x)\nabla V  - V \vec{}Q(x, t)] = 0 on \partial \Omega \times (0,\infty ),

where \^r(x, t) = r(x,t)M(t)
K(x,t) and \~K(x, t) is given by (3.3). By noting that (\theta \ast (x, t), 0) =

(M(t) \~K(x, t), 0) and (0, v\ast (x, t)) are semitrivial T -periodic solutions of (4.1), we de-
duce that ( \~K(x, t), 0) and (0, V \ast (x, t)) = (0, v\ast (x, t)/M(t)) are the corresponding
semitrivial T -periodic solutions of the transformed system (4.9).

Substituting ( \~K(x, t), 0) into the first equation of (4.9), we obtain

(4.10)
\partial \~K

\partial t
= \nabla \cdot [\mu \nabla \~K  - \~K \vec{}P ] in \Omega \times [0, T ].

It remains to show that ( \~K(x, t), 0) is a globally asymptotically stable solution of
(4.9).

Step 1. We claim that (4.9) has no componentwise positive periodic solutions
(i.e., (U, V ) such that U > 0 and V > 0). To this end, let (U, V ) be a componentwise
nonnegative periodic solution of (4.9) (i.e., U \geq 0 and V \geq 0). Assume U \not \equiv 0; then
by the strong maximum principle we have U > 0 in \=\Omega \times [0, T ]. It remains to show
that V (x, t) \equiv 0.
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Multiply the first equation of (4.9) by
\~K(x,t)
U(x,t) , then multiply (4.10) by logU and

add the two to get

\partial 

\partial t
( \~K logU) =

\partial \~K

\partial t
logU +

\~K

U

\partial U

\partial t

=
\~K

U
\nabla \cdot [\mu \nabla U  - U \vec{}P ] + logU\nabla \cdot [\mu \nabla \~K  - \~K \vec{}P ] + \^r \~K( \~K  - U  - V ).

Integrate by parts over \Omega , then integrate in [0, T ]. We get

0 =

\int \int \Biggl\{ 
 - 

\Biggl[ 
\nabla \~K

U
 - 

\~K\nabla U

U2

\Biggr] 
\cdot 
\Bigl[ 
\mu \nabla U - U \vec{}P

\Bigr] 
 - \nabla U

U
\cdot 
\Bigl[ 
\mu \nabla \~K - \~K \vec{}P

\Bigr] 
+ \^r \~K( \~K - U - V )

\Biggr\} 
dxdt

(4.11)

=

\int \int \Biggl\{ 
\mu \~K

| \nabla U | 2

U2
 - 2\mu 

\nabla \~K \cdot \nabla U

U
+\nabla \~K \cdot \vec{}P + \^r \~K( \~K  - U  - V )

\Biggr\} 
dx dt

=

\int \int \left\{   \mu \~K

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla U

U
 - \nabla \~K

\~K

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

 - \mu 
| \nabla \~K| 2

\~K
+\nabla \~K \cdot \vec{}P + \^r \~K( \~K  - U  - V )

\right\}   dx dt.

Next, we claim the following identity concerning \~K(x, t) and P (x, t) (see also [7,
pp. 73--74]):

(4.12)

\int \int \Biggl[ 
 - \mu 

| \nabla \~K| 2
\~K

+\nabla \~K \cdot \vec{}P

\Biggr] 
dxdt = 0.

Indeed, \int 
\Omega 

\Biggl[ 
 - \mu 

| \nabla \~K| 2
\~K

+\nabla \~K \cdot \vec{}P

\Biggr] 
dx =  - 

\int 
\Omega 

(\nabla log \~K) \cdot [\mu \nabla \~K  - \~K \vec{}P ] dx

=

\int 
\Omega 

\partial \~K

\partial t
log \~K dx

=

\int 
\Omega 

\partial 

\partial t
( \~K log \~K  - \~K) dx,

where the first and third equalities follow by simply rewriting the integrands; the
second equality follows by multiplying both sides of (4.10) by log \~K and integrating
by parts. Integrating in t \in [0, T ], we obtain (4.12).

Substituting (4.12) into (4.11), we deduce that

(4.13) 0 =

\int \int \left\{   \mu \~K

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla U

U
 - \nabla \~K

\~K

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ \^r \~K( \~K  - U  - V )

\right\}   dx dt.

Furthermore, we may integrate the first and second equations of (4.9) over \Omega \times [0, T ].
Then

(4.14)

\int \int 
\^rU( \~K  - U  - V ) dxdt = 0 =

\int \int 
\^rV ( \~K  - U  - V ) dxdt.
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Combining (4.13) and (4.14), we have

(4.15) 0 =

\int \int \left\{   \mu \~K

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla U

U
 - \nabla \~K

\~K

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ \^r( \~K  - U  - V )2

\right\}   dx dt.

Therefore,

(4.16) U(x, t) + V (x, t) \equiv \~K(x, t),

and there exists a T -periodic function 0 \leq c(t) \leq 1 such that

(4.17) U(x, t) = c(t) \~K(x, t) in \Omega \times [0, T ].

Substituting (4.16) and (4.17) into the first equation of (4.9) and comparing it with
(4.10), we deduce that c(t) = c0 for some constant c0 \in [0, 1]. Since both U and V
are positive, we have c0 \in (0, 1). Hence, we must have V (x, t) = (1  - c0) \~K(x, t) for
some c0 \in (0, 1). Substituting that into the second equation of (4.9), we deduce that
\~K(x, t) is a positive, T -periodic solution of\Biggl\{ 

\partial \~K
\partial t = \nabla \cdot 

\Bigl[ 
\nu \nabla \~K  - \~K \vec{}Q

\Bigr] 
= 0 in \Omega \times [0, T ],

n \cdot [\nu \nabla \~K  - \~K \vec{}Q] = 0 on \partial \Omega \times [0, T ].

This implies, by way of (3.10), that

\partial 

\partial t
(M \~K) - \nabla \cdot 

\Bigl[ 
\nu \nabla (M \~K) - (M \~K) \vec{}Q

\Bigr] 
= M \prime (t) \~K(x, t)

= r(x, t)M(t) \~K(x, t)

\Biggl( 
1 - M(t) \~K(x, t)

K

\Biggr) 

and that n \cdot [\nu \nabla (M \~K)  - (M \~K) \vec{}Q] = 0 on \partial \Omega \times [0, T ]. By uniqueness of positive
solution to (4.2), this means v\ast (x, t) = M(t) \~K(x, t). This is in contradiction with
(4.8). Hence we conclude that there exists no positive periodic solution (U, V ) to
(4.9).

Step 2. We prove that the T -periodic solution (0, V \ast ) of (4.9) is repelling.
That is, for solutions (U, V ) with nonnegative, nontrivial initial data, \| (U, V )(\cdot , t)  - 
(0, V \ast )(\cdot , t)\| \not \rightarrow 0.

It suffices to show that (0, V \ast ) is linearly unstable. (See, e.g., [46, Theorem 1.3].)
To this end, let \sigma 1 be the principal eigenvalue of the following periodic-parabolic
eigenvalue problem (see, e.g., [32] for the spectral theory of linear periodic-parabolic
operators):
(4.18)\left\{       

\partial 
\partial t\Psi =\nabla \cdot 

\Bigl[ 
\mu \nabla \Psi  - \Psi \vec{}P

\Bigr] 
+ \^r(x, t)

\Bigl[ 
\~K(x, t) - V \ast (x, t)

\Bigr] 
\Psi + \sigma 1\Psi for x \in \Omega , t \in [0, T ],

n \cdot [\mu \nabla \Psi  - \Psi \vec{}P ] = 0 for x \in \partial \Omega , t \in [0, T ],

\Psi (x, 0) = \Psi (x, T ) for x \in \Omega ,

where V \ast (x, t) = v\ast (x, t)/M(t) is the unique positive periodic solution of

(4.19)

\biggl\{ 
\partial 
\partial tV

\ast = \nabla \cdot [\nu \nabla V \ast  - V \ast Q] + \^rV \ast ( \~K  - V \ast ) in \Omega \times [0, T ],

n \cdot [\nu \nabla V \ast  - V \ast \vec{}Q] = 0 on \partial \Omega \times [0, T ].
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By arguing as in Step 1, we obtain

0 =

\int \int \left\{   \mu \~K

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla \Psi 

\Psi 
 - \nabla \~K

\~K

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

 - \mu 
| \nabla \~K| 2

\~K
+\nabla \~K \cdot \vec{}P + \^r \~K( \~K  - V \ast ) + \~K\sigma 1

\right\}   dx dt.

Using the identity (4.12), we deduce that

(4.20) 0 =

\int \int \left\{   \mu \~K

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla \Psi 

\Psi 
 - \nabla \~K

\~K

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ \^r \~K( \~K  - V \ast ) + \~K\sigma 1

\right\}   dx dt.

Furthermore, we may integrate (4.19) over \Omega \times [0, T ] to obtain

(4.21)

\int \int 
\^rV \ast ( \~K  - V \ast ) dx dt = 0.

Subtracting (4.21) from (4.20), we obtain

0 =

\int \int \left\{   \mu \~K

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla \Psi 

\Psi 
 - \nabla \~K

\~K

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ \^r( \~K  - V \ast )2 + \~K\sigma 1

\right\}   dx dt.

Hence \sigma 1 \leq 0. We claim that \sigma 1 < 0. Indeed, suppose to the contrary that \sigma 1 = 0.
Then V \ast = \~K and thus v\ast = M(t)V \ast (x, t) = M(t) \~K(x, t), which is impossible in
view of (4.8). Hence \sigma 1 < 0, i.e., (0, v\ast ) is linearly unstable.

Step 3. We prove that the trivial solution (0, 0) of (4.9) is also repelling. That is,
for solutions (U, V ) with nonnegative, nontrivial initial data, \| (U, V )(\cdot , t)\| \not \rightarrow 0.

The instability of (0, 0) can be proved by repeating Step 2 line by line, while
setting V \ast \equiv 0. We omit the details.

Step 4. Conclude with the theory of monotone dynamical systems.
By [7, section 3], system (4.9) defines a monotone dynamical system. By Step 1,

we may invoke [33, Theorem A(c)] (see also [46, Theorem 1.3]) to deduce that any
internal trajectory of (4.9) converges to either ( \~K, 0) or (0, V \ast ). By Step 2, the
possibility (U, V ) \rightarrow (0, V \ast ) is ruled out. Thus (U, V ) \rightarrow ( \~K, 0). That is, the T -
periodic solution ( \~K, 0) of (4.9) is globally asymptotically stable. This is equivalent
to the global asymptotic stability of the T -periodic solution (\theta \ast , 0) of (4.1).

5. Conclusions. Our results extend those of [5, 7, 9] to more general forms of
logistic-type models and to situations where the total amount of resources available
in the environment can vary periodically in time. Specifically, we extend the idea of
fitness associated with a specific location in space to account for the full path that an
organism takes in space and time over a periodic, or seasonal, cycle, and we extend
the mathematical formulation of an ideal free distribution to general time-periodic
environments. We find that, as in many other cases, populations using dispersal
strategies that can produce a (generalized) ideal free distribution have a competitive
advantage relative to populations using strategies that do not produce an ideal free
distribution. From the biological point of view, a reason to specifically consider the
periodic case is that conditions on our planet are approximately periodic, and periodic
migrations are common and important, so they are a natural focus for ecological theory
and have attracted much interest from biologists. From the mathematical point of
view, the periodic case is the obvious next step after the static case, which remains
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mathematically tractable. We refer the reader to [37] for related discussions for an
invasibility criterion for populations with general time dependence.

There are a number of biological conclusions that can be drawn from the results of
our analysis. First, a sufficient and necessary criterion (see (3.9)) for the existence of
such a generalized ideal free distribution is obtained. The criterion is a statement on
the environment (local intrinsic growth rate r(x, t) and local carrying capacityK(x, t))
only. While such a generalized ideal free distribution is possible in quite general time-
periodic environments, there exist certain environments where it is impossible for
a single species---or for that matter, any coalition of species---to achieve ideal free
distribution. In the latter case, one can envision a never-ending dynamic succession
of the community of species in the evolutionary timescale. Namely, starting with any
group of interacting species which have already reached some stable pattern in the
ecological timescale, there is always the possibility that a novel mutation arises (or a
foreign invasive species arrives) and destabilizes the configuration. Such an instability
may cause the community to become larger (addition of one more species) or smaller
(one or more species become extinct). In either case, the whole community will
then approach a different stable ecological configuration, until the next destabilizing
mutation/invasion takes place.

An interesting observation is that a mathematical definition of fitness associated
with a movement strategy for organisms in time-periodic environments requires con-
sideration of the specific paths individuals take through space and time, not just the
spatiotemporal distribution of the population that the strategy produces. In a related
but different context, it was shown in [52] that the effectiveness of a protection zone
depends on the details of its path through space and time during a periodic cycle,
where in the static case there are no such geometric restrictions. Also, in [50] the
asymptotic behavior of the periodic-parabolic eigenvalue is also connected with some
periodic cycle in the associated kinetic system. These are only a few data points,
but they suggest a possible feature that may distinguish periodic-parabolic models
from elliptic models. It may be that to extend results in the elliptic case that depend
on local conditions in space to the periodic case will often require that the condition
hold on or in a neighborhood of an entire path connecting the beginning and end
of a periodic cycle. That would be consistent with our conclusions about the need
for nonlocal information in optimal dispersal in time-periodic environments. Related
ideas are discussed in [52].

Key features of populations that have an ideal free distribution are that individ-
uals optimize fitness; for populations with negative density dependence the area of
occupying region increases with population size; densities of populations at steady
state track habitat quality; and at steady state fitness is approximately constant
among individuals. These are all testable predictions of many models for the ideal
free distribution, including ours. There has been considerable empirical study of the
ideal free distribution, or the ideal free distribution with costs [61], which considers the
effects of factors other than resource uptake that affect fitness. Studies typically look
for fitness equalization or optimization [28, 31], matching of population density with
habitat quality or resource availability [18, 55, 59, 62], or some combination of those
[35, 48, 47]. The studies [35, 48, 47] were done on Daphnia magna in a water column,
which perform a periodic diel vertical migration between regions near the surface and
regions near the bottom of the water column. These empirical studies support the
idea that some populations, including those in periodic environments, approximately
follow some version of the ideal free distribution. The methods used in these studies
in principle could be adapted to further study systems, including some with periodic
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variation in time. Our results provide a way to theoretically characterize what an
ideal free distribution should look like in a general periodic environment and display
movement strategies that a population could use to achieve it. Recently, a study of
blue whales [1] showed that they can accurately track the locations of what amounts
to a multiyear average of roughly periodic, but somewhat stochastic, resources during
the course of a year. A particularly interesting finding of [1] is that blue whales use
memory to achieve resource matching. In temporally static but spatially varying en-
vironments it is possible for a population to achieve an ideal free distribution by using
purely local information on environmental gradients [5, 9] or habitat quality [40] to
track resources. The results of [7] and their extensions in this paper to more general
and realistic periodic models, which allow for seasonal variation in the total amount
of resources available in the environment, show that the realization of an ideal free
distribution typically requires some use of nonlocal information in space and time.
In general environments the nonlocal information must be processed in a complex
way, but it is plausible that blue whales could use memory to do that, since they are
intelligent and long lived. In any case, our results show that a species possessing the
ability to use memory or other means to process nonlocal information in dispersal
has a distinct selective advantage in a temporally periodic environment. See [22] for
some evidence that organisms can and do use nonlocal information in deciding how to
move. However, [35, 48, 47] found evidence of effective resource matching by D. magna
in periodic environments. This raises the question of how such a simple organism as
D. magna can manage to do this as a possible topic for further research. More broadly,
our work suggests that there should be additional theoretical and empirical study of
how organisms can approximate an ideal free distribution under realistic assumptions
about the limitations of their cognitive and dispersal abilities.

Appendix A. Asymptotic behavior of the principal eigenvalue. Consider
the principal eigenvalue \lambda 1 of

(A.1)

\left\{     
d\varphi 
dt = \mu \Delta \varphi + \alpha \nabla m(x, t) \cdot \nabla \varphi + V (x, t)\varphi + \lambda 1\varphi in \Omega \times [0, T ],

n \cdot \nabla \varphi = 0 on \partial \Omega \times [0, T ],

\varphi (x, 0) = \varphi (x, T ) in \Omega ,

where \nabla is the gradient operator with respect to the spatial variable x, \alpha is a positive
constant, m \in C2(\Omega \times [0, T ]), and V \in C(\Omega \times [0, T ]). We will follow the idea in [49,
Propositions 2.1 and 2.2] to prove the following result.

Proposition A.1. Suppose there exist a smooth, T -periodic curve \gamma : \BbbR \rightarrow Int\Omega 
and a set U which is open relative to \Omega \times [0, T ] such that

(i) \{ (\gamma (t), t) : t \in [0, T ]\} \subset U \subset Int\Omega \times [0, T ];
(ii) m(x, t) < m(\gamma (t), t) if (x, t) \in U and x \not = \gamma (t);
(iii) | \nabla m(x, t)| > 0 if (x, t) \in U and x \not = \gamma (t).

Then

(A.2) lim sup
\alpha \rightarrow \infty 

\lambda 1 \leq  - 1

T

\int T

0

V (\gamma (t), t)) dt.

Remark A.2. Suppose \gamma (t) is a smooth, T -periodic curve such that \nabla 2m(\gamma (t), t)
is negative definite for each t \in [0, T ]. Then the hypotheses (i)--(iii) can be verified.

Proof. By a rescaling in the x variable, we may assume \mu = 1. We also assume,
without loss of generality, that

(A.3) m(\gamma (t), t) \equiv 0 and V (\gamma (t), t) dt \equiv 0.
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These can be achieved if we replace m(x, t) by m(x, t) - m(\gamma (t), t), V (x, t) by V (x, t) - 
V (\gamma (t), t), \varphi (x, t) by \varphi (x, t) exp( t

T

\int T

0
V (\gamma (s), s) ds - 

\int t

0
V (\gamma (s), s) ds, and \lambda 1 by \lambda 1 +

1
T

\int T

0
V (\gamma (t), t) dt.

The goal is to show that lim sup\alpha \rightarrow \infty \lambda 1 < \varepsilon for each \varepsilon > 0. By [49, Proposition
A.1], it suffices to construct a nonnegative, nontrivial subsolution \varphi , such that

d\varphi 

dt
\leq \Delta \varphi + \alpha \nabla m(x, t) \cdot \nabla \varphi + V (x, t)\varphi + \varepsilon \varphi in \Omega \times [0, T ],(A.4)

n \cdot \nabla \varphi = 0 on \partial \Omega \times [0, T ],(A.5)

\varphi (x, 0) = \varphi (x, T ) in \Omega .(A.6)

We now fix \varepsilon > 0 hereafter and construct \varphi . By the strictness of the spatial local
maximum point of m at x = \gamma (t), we can choose a0 < 0 such that m(x, t) \leq a0 on
\partial U . By hypotheses (i) and (ii), we can choose a \in (a0, 0) small enough such that

(A.7) | V (x, t)| < \varepsilon 

2
in \{ (x, t) \in U : m(x, t) > a\} .

Next, fix b = a/2. Then a < b < 0 and, by virtue of hypothesis (iii) and compactness,

(A.8) inf | \nabla m| > 0 with the infimum taken over \{ (x, t) \in U : a \leq m(x, t) \leq b\} .

Next, fix \delta > 0 small such that

(A.9) \delta (\| \partial tm\| L\infty (\Omega \times [0,T ]) + \| \Delta m\| L\infty (\Omega \times [0,T ])) <
\varepsilon 

2

and choose a smooth function g : \BbbR \rightarrow \BbbR such that

(A.10) g\prime (s) > 0 for s \in \BbbR , g(a) = 0, and g(s) = 1 + \delta (s - b) for s \in [b, 0].

Now, define

\varphi (x, t) =

\Biggl\{ 
max\{ g(m(x, t)), 0\} in U,

0 otherwise.

Since m(x, t) \leq a0 on \partial U , it also satisfies m(x, t) < a in a neighborhood of \partial U .
Hence \varphi is continuous in \Omega \times [0, T ] and satisfies (A.4) in an open set containing the
complement of U . Also, since \varphi (x, t) is T -periodic (since m(x, t) is) and is compactly
supported in the interior of U , it is clear that (A.5) and (A.6) hold. It remains to
show that (A.4) holds in U .

For (x, t) \in U , the function \varphi can be written as

\varphi (x, t) = max\{ g(m(x, t)), 0\} =

\Biggl\{ 
g(m(x, t)) when m(x, t) > a,

0 when m(x, t) \leq a.

It is enough to verify that g(m(x, t)) satisfies (A.4) in \{ (x, t) \in U : m(x, t) > a\} in
the classical sense. We argue differently for the two regions

\{ (x, t) \in U : m(x, t) > b\} and \{ (x, t) \in U : a < m(x, t) \leq b\} .

In the first case \varphi (x, t) = 1 + \delta (m(x, t) - b), \varphi (x, t) \geq 1, and

d\varphi 

dt
 - \Delta \varphi  - \alpha \nabla m(x, t) \cdot \nabla \varphi  - (V (x, t) + \varepsilon )\varphi 

= \delta (\partial tm - \Delta m - \alpha | \nabla m| 2) - (V (x, t) + \varepsilon )[1 + \delta (m - b)]

\leq \delta (| \partial tm| + | \Delta m| ) - \varepsilon 

2
< 0,
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where we used (A.7) for the second-to-last inequality, and (A.9) for the last inequality.
In the latter case, we have a < m(x, t) \leq b, and for \alpha sufficient large,

d\varphi 

dt
 - \Delta \varphi  - \alpha \nabla m(x, t) \cdot \nabla \varphi  - (V (x, t) + \varepsilon )\varphi 

=  - g\prime (m)

\biggl[ 
 - \partial tm+\Delta m+

\biggl( 
g\prime \prime (m)

g\prime (m)
+ \alpha 

\biggr) 
| \nabla m| 2

\biggr] 
 - (V (x, t) + \varepsilon )g(m)

\leq  - g\prime (m)

\biggl[ 
 - \| \partial tm\| \infty  - \| \Delta m\| \infty +

\biggl( 
 - 
\bigm\| \bigm\| \bigm\| \bigm\| g\prime \prime g\prime 

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

+ \alpha 

\biggr) 
inf | \nabla m| 2

\biggr] 
,

where we used (A.7) and that g(m), g\prime (m) are both positive. Note that the infimum
of | \nabla m| , which is taken over the set \{ (x, t) \in U : a < m(x, t) \leq b\} , is a positive
real number by (A.8). Hence, by taking \alpha sufficiently large, we deduce that the
first part of (A.4) holds in \{ (x, t) : a < m(x, t) \leq b\} . Having verified that \varphi is a
nontrivial, nonnegative subsolution, we apply [49, Proposition A.1] to deduce that
lim sup\alpha \rightarrow \infty \lambda 1 < \varepsilon . Since \varepsilon > 0 is arbitrarily, the proof is finished.

Appendix B. Generalized IFD in relation to pathwise fitness. We provide
a proof for (2.9), which relates the notion of pathwise fitness with the generalized IFD
in the sense of Definition 2.1.

Lemma B.1. Let F (x, t) \in C(\Omega \times [0, T ]). Then

(B.1)

\int T

0

inf
x\in \Omega 

F (x, t) dt = inf
\gamma 

\int T

0

F (\gamma (t), t) dt,

where the infimum is taken over the family of all smooth, T -periodic paths.

Remark B.2. By replacing F by  - F , we show that

(B.2)

\int T

0

sup
x\in \Omega 

F (x, t) dt = sup
\gamma 

\int T

0

F (\gamma (t), t) dt,

where the supremum is taken over the family of all smooth, T -periodic paths.

Remark B.3. Since
\int T

0
F (\gamma (t), t) dt \geq 

\int T

0
infx\in \Omega F (x, t) dt for any \gamma \in C([0, T ]; \Omega ),

we can replace the family in taking the infimum in (B.1) (resp., supremum in (B.2))
by (i) all smooth paths, (ii) all continuous, T -periodic paths, or (iii) all continuous
paths.

Proof. Since it is clear that

(B.3)

\int T

0

inf
x\in \Omega 

F (x, t) dt \leq inf
\gamma 

\int T

0

F (\gamma (t), t) dt,

it remains to prove the reverse inequality. Let \varepsilon > 0 be given. Choose m \in \BbbN such
that

(B.4) | F (x, t) - F (x, s)| < \varepsilon if x \in \Omega and | t - s| < T/m.

Denote ti =
i
mT for 0 \leq i \leq m, and choose (x\prime 

i, t
\prime 
i) \in \Omega \times [ti, ti+1] (i = 0, . . . ,m - 1)

so that F (xi, ti) < inf\Omega \times [ti,ti+1] F + \varepsilon . Next, define the piecewise constant path \gamma 1 by

(B.5) \gamma 1(t) = x\prime 
i for t \in [ti, ti+1), i = 0, . . . ,m - 1,
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and let \gamma 2(t) be a smooth, T -periodic path such that

(B.6) \gamma 2(t) = x\prime 
i for t \in [ti, ti+1  - \varepsilon /m], i = 0, . . . ,m - 1.

Then by the uniform boundedness of F , we have

(B.7)

\int T

0

| F (\gamma 1(t), t) - F (\gamma 2(t), t)| dt \leq 2\varepsilon \| F\| \infty .

Hence, \int T

0

inf
x\in \Omega 

F (x, t) dt \geq T

m

m - 1\sum 
i=0

inf
\Omega \times [ti,ti+1]

F

\geq T

m

m - 1\sum 
i=0

[F (x\prime 
i, t

\prime 
i) - \varepsilon ]

\geq 
\int T

0

[F (\gamma 1(t), t) - 2\varepsilon ] dt

\geq 
\int T

0

F (\gamma 2(t), t) dt - 2\varepsilon (T + \| F\| \infty ),

where the second inequality follows from the construction of (x\prime 
i, t

\prime 
i) \in \Omega \times [ti, ti+1],

the third inequality follows from (B.4), and the last inequality follows from (B.7).
Thus, \int T

0

inf
\Omega 

F (x, t) dt \geq inf
\gamma 

\int T

0

F (\gamma (t), t) dt - 2\varepsilon (T + \| F\| \infty ).

Letting \varepsilon \rightarrow 0 and combining with (A.2), we prove (A.1).
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